Saltar menú de navegación Teclas de acceso rápido
Región

Carlos Pais: si no tomamos conciencia del riesgo de las reuniones sociales, la segunda ola no tiene meseta

Carlos Pais es bioingeniero y Magíster en Ingeniería Biomédica por la Facultad de Ingeniería de la Universidad Nacional de Entre Ríos. Dirige el proyecto de investigación "Predicción del impacto del clima, los confinamientos sociales y las distintas estrategias de salud pública sobre la pandemia Covid-19 mediante modelado espacio-temporal basado en agentes", seleccionado en la convocatoria extraordinaria de la Agencia de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Agencia I+D+i), del Ministerio de Ciencia, Tecnología e Innovación de la Nación, impulsada a raíz de la emergencia sanitaria.

El proyecto comenzó en julio de 2020 y tiene como objetivo principal modelar la dinámica epidemiológica de la Covid-19 en Entre Ríos para predecir su evolución en aspectos como la ocupación de camas de Unidades de Terapia Intensiva y el impacto de habilitaciones o restricciones sobre el número de contagios y fallecimientos, entre otros.

Los resultados de la investigación y predicciones se ponen a disposición de órganos de gobierno como el Nodo Epidemiológico de la Municipalidad de Paraná, el municipio de Gualeguaychú y el Ministerio de Salud de Entre Ríos, como un insumo más para la toma de decisiones.

En una pormenorizada entrevista, Pais resaltó el aporte del modelo basado en agentes para la predicción de epidemias, a partir de la inclusión de variables sociales en los cálculos matemáticos, así como la exactitud de las proyecciones logradas en Entre Ríos. También señaló que la última predicción realizada anticipa un nivel de ocupación de camas UTI superior al disponible en el sistema sanitario provincial, si no se consigue terminar con las fiestas y "juntadas", se reduce la movilidad de las personas y se mejora el cumplimiento de las medidas sociales de prevención. Este escenario fue trazado previo a las últimas restricciones dispuestas por los gobiernos nacional (DNU Nº 287/21) y provincial (decreto Nº 895/21).

La entrevista

- ¿Se basaron en experiencias previas? ¿Cómo funciona el modelo?

- La modelización basada en agentes es una técnica bastante nueva. Hay antecedentes de trabajos mucho más complejos que el nuestro. En Estados Unidos se hicieron estudios con modelos de hasta 10 millones de personas para otras patologías. Nosotros recabamos datos sociales concretos. Tenemos estadísticas de todas las ciudades de la provincia, pero también hicimos encuestas en las ciudades de Paraná, Concordia y Gualeguaychú, sobre las costumbres de las personas. Estamos viendo continuamente Google Mobility, que muestra la movilidad de las personas en las ciudades y cuánto se están desplazando en las distintas actividades. A eso nadie lo tenía en cuenta y es vital. En cuanto a movilidad, en la actualidad estamos casi en la misma situación que previo a la pandemia

- ¿El modelo es preciso para medir la cantidad de casos positivos de Covid-19?

- La variable de la que más se habla es la cantidad de infectados o nuevos casos, aunque normalmente los casos reportados no coinciden con los que predice el modelo. Esto se debe a que en esta enfermedad existen muchos asintomáticos y a la vez se llevan a cabo pocos testeos en nuestro país, lo que lleva a que los casos reportados del modelo no coincidan con lo que se reporta en medios de comunicación y demás. Lo que sí podemos contrastar con la realidad, y nos da exacto, son las camas UTI ocupadas por pacientes de Covid-19 y los fallecidos.

- ¿Hay relación entre las variables que mide el modelo y la cantidad de casos reportados?

- El modelo puede estimar, en función de cuánto se está testeando y la cantidad de casos estrechos. Pero no trabajamos para generar el número de casos, sino para decir: "tengan cuidado porque se viene una ola y se puede colapsar el sistema de salud" o "vas a tenerlo ocupado a la mitad". Respecto de ese número, estamos prediciendo los valores con total precisión, ni una cama más ni una menos. Por ejemplo, el 7 de diciembre predijimos, en función de lo que iban a ser las Fiestas, qué cantidad de camas UTI se iban a necesitar a mediados de enero en Paraná. Tenemos el orgullo de mostrar que los valores de camas ocupadas hacia mediados de enero que el modelo predijo coincidieron exactamente con lo recabado por el Programa de Monitoreo de Unidades Críticas del Ministerio de Salud provincial. Lo mismo hicimos para el comienzo de las clases. Comparamos cómo iba a afectar el comienzo de clases a la ocupación de camas UTI si no se abrían aulas, si se abrían todos los días, o si se abrían una semana sí y una no.

"El modelo no solamente puede seguir a la realidad sino que está prediciendo muy bien hacia adelante"

- ¿Las clases aumentan los contagios?

- De acuerdo al modelo, las clases no generan diferencia. Es un 1% de diferencia abrir o no. Lo que mueve la cantidad de camas que se van a ocupar es el clima y la movilidad de las personas. Lo digo de forma ascéptica, porque se dicen muchas cosas en este sentido. En las simulaciones asumimos que el transporte público cumplía el aforo, es decir que no viajaban más de 22 personas por colectivo, y con ventanillas abiertas. Eso no se está cumpliendo y eso movía para arriba la cantidad de contagios y camas UTI ocupadas con la apertura de escuelas.

- ¿Cuál es la última proyección que hicieron?

- Si no se hace nada, esta segunda ola va a ser muy fuerte. Es bastante más fuerte que la primera. En el modelo estamos ensayando que no haya ninguna fiesta, que se cierre todo a las 12 de la noche, que las reuniones en iglesias o clubes sean con aforo restricto. Suponiendo que se cumpla a rajatabla el decreto, la curva empieza a amesetarse. Si sigue todo con la misma movilidad de gente, esta segunda ola no encuentra meseta. Para el 15 de mayo estamos superando la ocupación de camas del pico de septiembre/octubre del año pasado.

- Si no hay reducción de la circulación de personas, ¿la proyección supera la cantidad de camas disponibles en el sistema de salud?

- Sí, de aquí a dos o tres semanas. Una política que debería implementarse es descargar el sistema sanitario de otras patologías y de todas las cirugías que puedan reprogramarse. La cantidad de casos Covid aún es relativamente chica. Todavía podría subir mucho. Hay muchos respiradores. Pero el sistema sanitario está naturalmente siendo ocupado con otras enfermedades.

- Además de las medidas oficiales, ¿qué se puede hacer a nivel social o comunitario?

- Hay que ordenar la sociedad para que no se pare, pero reducir la movilidad de todas las formas posibles. Hay cierta relajación. Se puede mejorar mucho promoviendo y cumpliendo con el distanciamiento, el uso barbijo y la ventilación. Esas tres variables están bajas y se deben mejorar.

- ¿El frío suma contagiosidad?

- Sí. El virus es más activo y eficiente cuanto más bajas son la temperatura y la humedad. Alrededor de los 5 a 15 grados es más efectivo. Por eso los rebrotes se producen en invierno y a Europa se le estiró tanto la segunda ola, porque siguen con bajas temperaturas. En nuestra zona la humedad siempre es alta y eso juega a favor, pero cuando baja la temperatura hay más contagios. También porque la gente se guarda más puertas adentro y hay menor ventilación.

Alcance internacional

El proyecto tiene su plazo de finalización en julio próximo, pero el proceso y los resultados obtenidos le valieron una nueva selección, ahora en una convocatoria del International Development Research Centre (IDRC) de Canadá y la Swedish International Development Cooperation Agency (Sida) de Suecia.

La misma tiene como objetivo apoyar a investigaciones multidisciplinarias tendientes a desarrollar y escalar enfoques responsables de inteligencia artificial y ciencia de datos aplicados a la gestión de la emergencia por la COVID-19 y de eventuales futuras pandemias en países de ingresos bajos y medios. Se presentaron 154 propuestas de diversas regiones del mundo y resultaron seleccionadas siete.

Coronavirus

Ahora en portada

Teclas de acceso